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1. Introduction

Various forms of fractional integrals and derivatives
are known. Fractional integrals and Riemann-
Liouville derivatives are the most common in the
scientific literature [1]. Operators of generalized
fractional integro-differentiation  with  Gauss
hypergeometric function.

Direct extension of the Riemann-Liouville fractional
integro-differentiation operations to the case of
many variables, when these operators are applied for
each variable or some of them, gives the so-called
partial and mixed fractional integrals and
derivatives. They are known [1], as well as [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]. Thus, in [2],
using the two-dimensional Laplace transform, a
solution of the two-dimensional Abel integral
equation was obtained.

In this paper, we study the question of the
composition of the mixed fractional integral and the
mixed fractional derivative in a sufficiently broad
class of functions. The treatment formula for the
mixed fractional derivative is obtained. The results
obtained can be applied in the theory of differential
equations  containing the mixed fractional
derivatives.

Lemma 3 on the representability of f(x,y)e AC""(Q)

function in the form of (6) and Lemma 4 generalized
is the previously known Lemmas 1 and 2 for the
two-dimensional case. Lemmas 3, 4 permits to prove
the theorem (a necessary and sufficient condition for
the representability of f(x,y) function as the mixed

fractional integral of a summable function) and
Theorems 2 and 3 about the composition of a mixed
fractional integral and a mixed fractional derivative.
Note that Theorems 2 and 3 generalize the results of
Theorem 2.4 [1, p. 44] for the two-dimensional case.

2. Preliminaries

The important role in the theory of fractional integro
differentiation is played by absolutely continuous
functions.
Let Q={x,y):a<x<b,c<y<d},

—o<a<h<+4w, —o<c<d <40
Definition 1 [1, p. 2]. f(x) the function is called
absolutely non-discontinuous into segments [a,b]if,

for any, e>othere exists >0 such that for any
finite set of pairwise non-intersecting intervals

m

> (b —a,)<sthe

k=1

[a,.b Je[ab], k=Lmsuch that

inequality i|f(bk)—f(ak)|<s holds. The space of
k=1

these functions is denoted by AC([a, b]).

Definition 2 [1, p. 2]. Let us denote by AC"([a,b]),
where n=12,..., the spaces of functions f(x) that
have continuous derivatives up to order n-1 on
[a,b] with 9 (x)e AC([a,b]).

Definition 3. A function f(x,y) is called absolutely

continuous in Qif for any e>0 there exists §>0
such that for any finite set of pairwise non-
intersecting intervals
Ay ={(X%y): Xy X< X, Y SY <Y}, the sum of the
areas of which is less &, the inequality holds

Z|f(xzk7ka)‘ f Xk Yar )= F Oxair Yok )+ f(Xlkvylk)< e,(1)
k=1

and if,  moreover, f(a,y)e AC(lc,d])  and
f(x,c)e AC([a,b]). The class of all such functions is
indicated Ac(Q).

Definition 4. By AC™"(G3), where n=12,..., let us

denote the class of functions continuously

differentiable on Q up to order (n-1 m-1), and its
n+m-2

mixed partial derivative oy is absolutely

continuous in Q.
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It is known that the class AC"([a,b]) belongs to those
and only those functions f(x) that are representable
as antiderivatives of Lebesgue summable functions:

(0= [uikiceC, vieLab). @

Lemma 1 [1, p. 39]. Space AC"([a,b]) consists of
those and only those functions f(x), which are
represented in the form

f(x):ﬁi(x—t)”lcp(t)dt+:z_::ck(x—a)k )

where ¢(x)e Ly([a,b]) C, being arbitrary constants.
In the formula (3)

) £ ()
(p(’[): f( )('[), Cy :k—l(a) . (4)
The last equality uses the notation f(™(x)= d;fgx)
X

A similar property of the functions f(x y)e AC(Q) is

as follows.
Lemma 2 [3, p. 238]. The class AcC(Q) consists of

those and only those functions f(x,y) which are
represented in the form

(0y)=] ot sktds s [ttt [niskssc,  (5)

a Cc
where o(x y)e L(Q). w(x)e Ly([a,b]) n(y)e Li(c, d),
and c is an arbitrary constant.
In order to generalize the last lemma to the case of a

class AC™"(Q2), we need the following lemma.
Lemma 3. Let f(x,y)e AC(Q), then

f(x,y)

© ot £0m( s)dtds .
“(X )1 "(y-sf™"

i=0 k=0
In formula (6) the notation used
f(i,k)(x, y) def(X Y)
dx’ dy
an+m—2 f

Proof. Let be WEAC(E). By virtue of

Lemma 2, we have
an+m 2f

pREEEY jj@ts)dtds+jwt)dt+jn sis+C,  (7)

Integratlng (7) times sequentlally n-1 by x and
times m-1 by Y, we get

X
lj-.[x )" (y—s)" tolt, s)dtds +
a C

+ 2 a(vI-a) + 3 T (hy e (8)

where %(y) i=0n- 1) () (k=0,m—1) is an arbitrary
function. When integrating, the well-known for n -
multiple integral formulae is used [1]

jdxjdx IF dx_ J.x )" ()t 9)

proof, WhICh is easy to |mplement by mathematical
induction. It will be clear from the proof that an
arbitrary constant in formula (7) is associated with
arbitrary functions of formula (8) by the relation
(n=2)z" I(c)+(m-1)7"V(a)=c,.

Since f(x,y)e AC™™(@),  then

aI:k fk (0<i<n,0<k<m) exist and are continuous
OX' oy
in Q. Calculating the derivatives with x respect to
the order o,n-1 of the function f(x,y) given by
formula (8), and assuming in them x=a, we obtain
the equalities

O
T
O

derivatives

i m-1

m i ( +Z é' (@\y-c), i=0,n-2,
(10)

o"flay)_ ¢ n(s)ds
ax”‘l _(m 1|C y— S)l m (n l) T 1(y)+

m-1
+> wa)y-c).
k=0

Similarly, differentiating (8) by y and assuming
y =c, We obtain the equality

K -
0 f(XC k1T Zr (c)x-a), k=0,m-2 ,
ay*

(12)
o™ (x,c) h \yt)dt

aym |_£ X t)l m 1|Tm 1(y)+

? (13)
+ Z%im’l (cXx—-a).

Expressing from formulas (10) - (13)
respectively, we get

%(y) and 7 (x)
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k! ayk,

_(x=a)? fn()ds B yc iw
(n=1(m -2t (y—sy=™  (n=L(m—-1)1J (x "
n-1 m-1 ) =(k) (i)

- (x—a)'(y—c){“—(c)ﬂ.—(a)]- (14
= = k! il

i+k
Calculating the mixed derivatives siayfk of the
X
function (8) at a point (a,c), we get
1 8o we) W) g

itk! ox'gy* k! i!
Substituting (14), (15) into (8), we get

X

~ 1 (t,s)dtds
f(x,y)= (n—l)!(m—l)!-! _[(X_:p _n(y_s)1_m +

S10'f(@y) P 1 0ff(xc) K
+i:0ﬁ ox! (X—a) +k:0k! @yk (y_c) _
S5 1 0"f(ae) i k
) T aaayt Xmfly—e). (16)

i=0 k=0
1

Equality (6) follows from (16) and from the fact that

o(x,y)= amax";a;(ﬂ;)' The lemma is proved.

The following lemma gives a description of the class
AC™™(03). It generalizes Lemma 1 to the case of two
variables and Lemma 2 to the case n+m>2.

Lemma 4. Space AC"™(Q) consists of those and
only those functions f(x,y), which are represented
in the form

f(x, y)sz j(x—t)”l(y—s)mlcp(t,s)dtds+
+ mzl J)S \uk(t)dt +
+,=0i5?n;i*>).{ (-5 ik

n-1 m-1

+z zcik(X—a)i(y—C)k ' (17)

i=0 k=0
where  o(x,y)e (@) vi(x)eL(abl)  (k=0m-1),
n(y)el(cdl) (=0n-1),  c; being arbitrary
constants.

Proof. Necessity. Let f(xy)eAC""(G). According
to the lemma 3

1 fr 1ms)
R v B e
n-1 £(i.0) m-1 ¢ (0k) ,
2 i(!a y)(x_a) ’ k(!x o y-of -
i=0 k=0
n-1 m-1 ¢(i,k) .
S S ay(y-of (18)
= = ik!
Because ttm 1)y y)e AC(Q), then
(19 y)e AC(c,d]), consequently,
£ 193, y)e AC™([c.d]), from here

109, y)e AC"(c.d]) (i=0,n-1). Use lemma [1,
c.39]

y
f('o)(a y)= ! I —ds +
o (19)
m— f ,
where n;(y)e L([c,d]). Then
$10%ay) oy §F ) §onte
; il ( a) Z“m 1|Cy S)lmds+
n-1 m 1f i
2 g I,k, )ix-af (y-o
(20)
Similarly, it is proved that
m—lf(o,k)(x,c) y 71 k X \V
Z k1 (y—C) |kl n 1';!: X t)l m dt +

(21)
where . (x)e Li([a,b]). Substituting (20), (21) into
(18), We obtain the formula (17), in which

Cix = m il k)(a c). (22)

ai+kf

Sufficiency. When calculating directly ———
ox'oy

(0<i<n,0<k<m), it is easy to make sure that they
are all continuous in Q, and

2
;}Laymfl jj@tsdtds+jw dt+JC' n(s)ds +

(n 1)t (m— 1)!Cn—l,m—1'

(23)
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an+m 2

Obviously —e AC(@), from where it follows

f(xy)e AC”'”‘( )
The theorem is proven completely.

Notice, that

olxy)= "M (x,y); (24)
wi(X)= " (xc) k=0om-1;  (25)
ni(y)=f4"(a,y), i=0,n-1; (26)
Cik Im #19(a,c). (27)

Definition 5 [1, c. 459]. Let f(xy)eL(Q). The

integral

1Bt Yy f(t, s)dtds |

(a+,c+ XX y) ;‘: j X t)l )1[;

where >0, [3>0, is called a left- hand sided mixed
Riemann-Liouville fractional integral of order (a,B).

The fractional integral (28) is obviously defined on
functions f(x,y)e L,(Q), existing almost everywhere.

Using the Fubini theorem, the semigroup property is
proved.

Let f(x,y)eL(Q), oB,y.8 be positive numbers, then
equality holds almost everywhere in Q

LS ERN I ot o (29)

It can be shown that if a>0 the function f(xy) is
defined in @ and f(x,y)e (), then

(e, Jx y)e Le,d1) vxe(ab);

(12, Ixy)eL(ab]) welcd).

In the last equations 1g ,f, 17 ,f are partial
Riemann — Liouville fractional integrals with respect

to the variables x and y, respectively.

Taking these equalities into account, it is
directly verified that
(1208, )= (08 18 Ly)= (1285, £ Jx,y).
(30)
Definition 6 [1, c. 460]. For function f(x,y), given
on Q, formula

( a+c+fxx y

(28)

<m B
x (31)

oM J‘J‘ ts)dtds
X

8x“8y X ta n+l y S)B m+1
where a>O,B>0, is called a mixed Riemann-
Liouville  fractional  derivative  of  order
(o, B), n=[a]+1, m=[B]+1.
If the function f(x,y) has a property

11-emPf < AC™™(Q2), then the order of taking the
derivatives in (31) does not matter, and
(Dg+Bc+fXX! y)e Ll(Q) :

Definition 7 is a two-dimensional analogue of
Definition 2.3 [1, p. 43].

3. Compositions of mixed fractional integral and
mixed fractional derivative of the same order

Following [1, p. 44], we define the following classes
of functions.

Definition 7. Let 13" ,(L) denote the space of
function f(x,y), represented by the left-sided mixed
fractional integral of the order (a,p) of a summable
function: f=13",0, peL(Q).

Definition 8. Let 0<a<1 0<p<1. A function
f(x y)eL(Q) is said to have a summable fractional
derivative D2, f , if 12:%mf c AC™™(Q).

The following theorem defines the necessary and
sufficient condition for the unique solvability of the
two-dimensional Abel integral equation.

Theorem 1. In order that

f(xy)eldl, (L) a>0,B>0, it is necessary and
sufficient that

fn—a,m—[} € ACn,m(ﬁ), (32)
where n=[a]+1 m=[B]+1, and that

t00 s(ay)=0, i=0n-1; (33)
£00) 5(xc)=0, k=0,m1; (34)

£ s(a,c)=0, i=0n-1 k=0,m—L1. (35)
Proof. Necessity. Let f=13",0, peLi(Q). In view
of the semigroup property

fn—a,m—ﬁ(xl y)_ |2+Cé+m Bf - |a+ c+ P (36)

where ¢ely(Q). From here follow feasibility
conditions (33) — (35). Feasibility condition (32)
follow from Lemma 4.

This implies the fulfillment of conditions (33) - (35).
The fulfillment of condition (32) follows from
Lemma 4.

Sufficiency. Under condition (32), we can present
foamp according to Lemma 3, in the form

X— a)i (y - C)k ) (37)

fnm) seL(@). Taking into  account

conditions (33) - (35), the last equality is written in
the form
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nncxmm B(t S)

'-!:-[xt)1 "(y—s) ™

fogump(Xy)= dtds
(38)

Using the semigroup property (29), we can write
n-om-pfg _nm f(nmr)n B_In u+m Bpop f(nm)

a+,c+ a+,C+ o a+,c+ 'n—o,m-B *

(39)
From here 17:%m#(f — 125, 7™ )—0. Applying the

a+,C+

integral to this equality 12, , we get

It’:1]+mc+(f I:+Bc+fnnamm B}dey 0. (40)
From here f=1gf fom o fm en(@). The

theorem is proved.

Note that Theorem 1 is a generalization of Theorem
2.3 [1, p. 43] in the case of two variables. From it, in
particular, it follows that the class of functions
having a summable fractional derivative D%, f in
the sense of Definition 8 is wider than the class of
functions 13", (). Namely, the class 135, (L)
owns only those functions that have a summable
fractional derivative DY, f, for which equalities

(33) - (35) hold.
Theorem 2. Let a>0, B>0. Then equality

DL NZE f = f(xy) (41)

a+,C+"a+,C+

performed for any summable function f(x,y).
Proof. We have

an+m
DyP gl =1 e PIgP =
a+,C+"a+,C+ - aX m a+,Cc+ a+,C+ -

_ 1 a”“"if dtds
T(e)r(B)r(n - a)r(m—B) ox"oy™ 3 3 (x—t)"

t
u v dudv
xj I (t—u)"“(s—v)"P
Changlng the order of integration, we get

o,B o,p (F(G>F(B))7l 6n+m £ y
DIP B f = )l B) 575" 2[ _c[ f (u,v)dudv

(42)

Xy

dtds
><J‘-[xt‘)‘(ystu) “s—v)"P

6n+m

m

X Yy
jjfuvdudv
a ¢C

an+m Xy
= m-é[-!xu)l yV)lmdudv—
= f(xy), (43)

Theorem 3. For any function f(x,y)e 13", (L) the
equality

|g+ c+ af,)c+f = f(X, )/), (44)

and for any function that has a summable derivative
D%P., f (in the sense of definition 8) the equality

a+,C+
< l 1,0)
198, DP_f = f(x n”a'g (ay)-

a+c+ P at,ct £ F
1 y C
F
-1

3

k=

o

5
=0k
(45)
where £ 5(x,y)=11"f .
Proof. Let f(xy)eldl, (L), then f(xy)=12% 0,
o(x, y)e L (). Based on Theorem 2, we have

3

)“'l( cf
—i)r(p-

) Cf{rianYa )

Or?1mﬁk l(x c)+
k

OM

|g+ c+ a+ c+f = Ig+Bc+Da+ c+|a+ c+P= Igqu) = f (X, y) .

(46)

Let now 15%Pf e AC(Q). According to Lemma 3,
the integral  f,_, ., p(xy)=12%""f can be
represented as

fnm

', ay i
fn o,m— B(Xy)_|a+c+nam B+Z n mB )X a)'+

m-1
+an am- [3 XC)(y—c)k—

_TZ_: ran:fnlarl:IIﬁ; ) a)i(y_c)k ] (47)

By the semigroup property, the equality

jn.m f(nm) | n-em-p | op f(nm
a+c+ 'n-a,m-p — latc+ a+,Cc+ 'n—a,m-B °

(48)
Further,

(x-a)

o, o X—2a
g B(DgJ Loreth o)

fn(I g)m B(a y)

L) (=) o o
i\r(m—p) foo al( )=

_yramp[ (=2 o)
- Ia+,c+ {F(l-ki—ﬂ-‘r(l) 1:n—oL,O(a’ y)J-’_
(x-a)(y-o
ilm(m-p)
From the last equality it follows that
n-1 f( ) (a y) i
(x-a) =

z n— (xmiIB

i=0

(49)

£09 (a,c).

n—-o,l

)I n+o

n-1
_ | n-o.m-p 2 ( )
|a+c+ { F1+|—n+a) n a,O(aly)J"'
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S e

from where, redesignating the summation index, we

(50)

Equality is obtained similarly
n-1 fn(o"zn X, C

5t el oy

i=0 I
Inamﬁ{mly C fri Omkl)(xc)]_;’_
a+,c+ = F( 0,m-B

+§“i&£%””&wm»

It is not difficult to see that

(52)

x-a) (y-c) =

n—o.,m—| SRS n—o,m—| (X_a)l y_c)k
= Ia+,c'+ B[; Ia+,c’+ ﬁ(ﬂ—(kl fn( z)m B(a C) =

—a o—i—1 —c —k-1 ik
) (y )ﬁ fn(—a,mliﬁ k ”(a,c)].

a-i)n(p-k)

i=0 k=0 r(

(53)
Taking into account equalities (48), (51) -
equality (47) is written in the form

In o,M— [Sf _In o,M— ﬁIaB D(x

a+,c+ a+,Cc+ a+,c+~ a+,c+

+w;a“{zﬁ§§%3—qzwm@»ﬂ+

f+

i=0

+n1 ) )m p-1
= uw@ B)

+@£Fﬂ29ﬁ§77

£00) (a,c)+

n—a,l

Fom ), c)] +
k=0

> e

'S 1(X a)& I l(y C)B K n—i-1,m-k-1
ey el

(54)
By grouping the terms, we get

n-1(,  \a-i-l
|g+0é+m B[f - Ig+ﬁc+D(;+ c+ f _Z%
i=0

£, y)-

1 k-1
mz:y Cﬁ § (O.m—k-1)
=0 F

fo.m-p (x,c)+

(53),

=nz_‘l‘(X—§)i(y C)m - £(.0) (a C)+

n—o,1\*

i=0 k=0 (

(55)

In the right-hand side of equality (55), under the
integral is a summable function. Applying the
operator 12, to both parts of equality (55), we

obtain
n l a i-1

@ﬂ{fl&%D;H ol -

m—l( _ A\B-k-1

y C) £ (omk)(y o

o F(ﬁ K) fo m-p (x.c)+

S (x-a) Ty —cf (n-i-1m—k-1) J
+ fn—a m- ac)|=

iZ:o: o Tlo-i r(B-k) P (@)
B n-1 (X a)|+u (y C) ( )
- (i + o +1)r(m) faea(@.c)r

(56)

+

Mi g

(y—c)Plx=a)'™ i)
2 s tepyr) b

Under the integral on the left side of the equality is
the summable function, and the right side of the
equality is absolutely continuous. Finding the mixed

n+m
derivative —2 of both parts of the equality, we
aym
get
o o n-1 X—a o—i—1 L
f- Ia+Bc+Da+ c+ f- - % fn(HaI,OLO)(a’ y)_

Z r( ) OOmmBk 1)(x,c)+
& S

i=0 k=0
(57)
The theorem is proved.

f(n i-1,m—k 1)(a C)=0.

n—o, m-fB
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