Mixed Fractional Integration and Differentiation as Reciprocal Operations

Author's Details: Akhmedov Mumtoz ${ }^{1}$, Mamatov Tulkin ${ }^{2}$
${ }^{1,2}$ Bukhara Technological Institute of Engineering, A. Murtazayev 15, Bukhara, Uzbekistan mamatov.tulkin@mail.ru

Abstract

We study the question of the composition of the mixed fractional integral and the mixed fractional derivative in a sufficiently broad class of functions. The treatment formula for the mixed fractional derivative is obtained.

Keywords: mixed fractional integral, mixed fractional derivative, the function of two variables, RiemannLiouville integrals.

1. Introduction

Various forms of fractional integrals and derivatives are known. Fractional integrals and RiemannLiouville derivatives are the most common in the scientific literature [1]. Operators of generalized fractional integro-differentiation with Gauss hypergeometric function.
Direct extension of the Riemann-Liouville fractional integro-differentiation operations to the case of many variables, when these operators are applied for each variable or some of them, gives the so-called partial and mixed fractional integrals and derivatives. They are known [1], as well as [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Thus, in [2], using the two-dimensional Laplace transform, a solution of the two-dimensional Abel integral equation was obtained.
In this paper, we study the question of the composition of the mixed fractional integral and the mixed fractional derivative in a sufficiently broad class of functions. The treatment formula for the mixed fractional derivative is obtained. The results obtained can be applied in the theory of differential equations containing the mixed fractional derivatives.
Lemma 3 on the representability of $f(x, y) \in A C^{n, m}(\bar{\Omega})$ function in the form of (6) and Lemma 4 generalized is the previously known Lemmas 1 and 2 for the two-dimensional case. Lemmas 3, 4 permits to prove the theorem (a necessary and sufficient condition for the representability of $f(x, y)$ function as the mixed fractional integral of a summable function) and Theorems 2 and 3 about the composition of a mixed fractional integral and a mixed fractional derivative. Note that Theorems 2 and 3 generalize the results of Theorem 2.4 [1, p. 44] for the two-dimensional case.

2. Preliminaries

The important role in the theory of fractional integro differentiation is played by absolutely continuous functions.
Let $\Omega=\{(x, y): a<x<b, c<y<d\}$,

$$
-\infty \leq a<b \leq+\infty,-\infty \leq c<d \leq+\infty
$$

Definition 1 [1, p. 2]. $f(x)$ the function is called absolutely non-discontinuous into segments $[a, b]$ if, for any, $\varepsilon>0$ there exists $\delta>0$ such that for any finite set of pairwise non-intersecting intervals $\left[a_{k}, b_{k}\right] \in[a, b], \quad k=\overline{1, m}$ such that $\quad \sum_{k=1}^{m}\left(b_{k}-a_{k}\right)<\delta$ the inequality $\sum_{k=1}^{m}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\varepsilon$ holds. The space of these functions is denoted by $A C([a, b])$.
Definition 2 [1, p. 2]. Let us denote by $A C^{n}([a, b])$, where $n=1,2, \ldots$, the spaces of functions $f(x)$ that have continuous derivatives up to order $n-1$ on $[a, b]$ with $f^{(n-1)}(x) \in A C([a, b])$.
Definition 3. A function $f(x, y)$ is called absolutely continuous in Ω if for any $\varepsilon>0$ there exists $\delta>0$ such that for any finite set of pairwise nonintersecting
intervals $\Delta_{k}=\left\{(x, y): x_{1 k} \leq x \leq x_{2 k}, y_{1 k} \leq y \leq y_{2 k}\right\}$, the sum of the areas of which is less δ, the inequality holds
$\sum_{k=1}^{n}\left|f\left(x_{2 k}, y_{2 k}\right)-f\left(x_{2 k}, y_{1 k}\right)-f\left(x_{1 k}, y_{2 k}\right)+f\left(x_{1 k}, y_{1 k}\right)\right|<\varepsilon,(1)$ and if, moreover, $\quad f(a, y) \in A C([c, d])$ and $f(x, c) \in A C([a, b])$. The class of all such functions is indicated $A C(\bar{\Omega})$.
Definition 4. By $A C^{n, m}(\bar{\Omega})$, where $n=1,2, \ldots$, let us denote the class of functions continuously differentiable on $\bar{\Omega}$ up to order ($n-1, m-1$), and its mixed partial derivative $\frac{\partial^{n+m-2} f}{\partial x^{n-1} \partial y^{m-1}}$ is absolutely continuous in $\bar{\Omega}$.

It is known that the class $A C^{n}([a, b])$ belongs to those and only those functions $f(x)$ that are representable as antiderivatives of Lebesgue summable functions:
$f(x)=\int_{a}^{x} \psi(x) d x+C, \quad \psi(x) \in L_{1}(a, b)$.
Lemma 1 [1, p. 39]. Space $A C^{n}([a, b])$ consists of those and only those functions $f(x)$, which are represented in the form
$f(x)=\frac{1}{(n-1)!} \int_{a}^{x}(x-t)^{n-1} \varphi(t) d t+\sum_{k=0}^{n-1} C_{k}(x-a)^{k}$,
where $\varphi(x) \in L_{1}([a, b]) C_{k}$ being arbitrary constants.
In the formula (3)
$\varphi(t)=f^{(n)}(t), \quad C_{k}=\frac{f^{(k)}(a)}{k!}$.
The last equality uses the notation $f^{(n)}(x)=\frac{d^{n} f(x)}{d x^{n}}$.
A similar property of the functions $f(x, y) \in A C(\bar{\Omega})$ is as follows.
Lemma 2 [3, p. 238]. The class $A C(\bar{\Omega})$ consists of those and only those functions $f(x, y)$ which are represented in the form
$f(x, y)=\int_{a}^{x} \int_{c}^{y} \varphi(t, s) d t d s+\int_{a}^{x} \psi(t) d t+\int_{c}^{y} \eta(s) d s+C$,
where $\quad \varphi(x, y) \in L_{1}(\Omega), \psi(x) \in L_{1}([a, b]), \eta(y) \in L_{1}([c, d])$, and C is an arbitrary constant.
In order to generalize the last lemma to the case of a class $A C^{n, n}(\bar{\Omega})$, we need the following lemma.
Lemma 3. Let $f(x, y) \in A C(\bar{\Omega})$, then
$f(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y} \frac{f^{(n, m)}(t, s) d t d s}{(x-t)^{1-n}(y-s)^{1-m}}+$
$+\sum_{i=0}^{n-1} \frac{f^{(i, 0)}(a, y)}{i!}(x-a)^{i}+\sum_{k=0}^{m-1} \frac{f^{(0, k)}(x, c)}{k!}(y-c)^{k}-$
$-\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{f^{(i, k)}(a, c)}{i!k!}(x-a)^{i}(y-c)^{k}$.
In formula (6) the notation used
$f^{(i, k)}(x, y)=\frac{d^{i+k} f(x, y)}{d x^{i} d y^{k}}$.
Proof. Let be $\frac{\partial^{n+m-2} f}{\partial x^{n-1} \partial y^{m-1}} \in A C(\bar{\Omega})$. By virtue of Lemma 2, we have

$$
\begin{equation*}
\frac{\partial^{n+m-2} f}{\partial x^{n-1} \partial y^{m-1}}=\int_{a}^{x} \int_{c}^{y} \varphi(t, s) d t d s+\int_{a}^{x} \psi(t) d t+\int_{c}^{y} \eta(s) d s+C_{0} \tag{7}
\end{equation*}
$$

Integrating (7) times sequentially $n-1$ by x and times $m-1$ by y, we get
$f(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y}(x-t)^{n-1}(y-s)^{m-1} \varphi(t, s) d t d s+$
$+\frac{(y-c)^{m-1}}{(n-1)!(m-1)!} \int_{a}^{x}(x-t)^{n-1} \psi(t) d t+$
$+\frac{(x-a)^{n-1}}{(n-1)!(m-1)!} \int_{c}^{y}(y-s)^{m-1} \eta(s) d s+$
$+\sum_{i=0}^{n-1} \bar{\tau}_{i}(y)(x-a)^{i}+\sum_{k=0}^{m-1} \tilde{\tau}_{k}(x)(y-c)^{k}$,
where $\bar{\tau}_{i}(y)(i=\overline{0, n-1}), \tilde{\tau}_{k}(x)(k=\overline{0, m-1})$ is an arbitrary function. When integrating, the well-known for $n-$ multiple integral formulae is used [1]
$\int_{a}^{x} d x \int_{a}^{x} d x . . . \int_{a}^{x} F(x) d x=\frac{1}{(n-1)!} \int_{a}^{x}(x-t)^{n-1} F(t) d t$,
proof, which is easy to implement by mathematical induction. It will be clear from the proof that an arbitrary constant in formula (7) is associated with arbitrary functions of formula (8) by the relation $(n-1)!\bar{\tau}_{n-1}^{(m-1)}(c)+(m-1)!\tilde{\tau}_{m-1}^{(n-1)}(a)=C_{0}$.
Since $f(x, y) \in A C^{n, m}(\bar{\Omega})$, then derivatives $\frac{\partial^{i+k} f}{\partial x^{i} \partial y^{k}}(0 \leq i<n, 0 \leq k<m)$ exist and are continuous in Ω. Calculating the derivatives with x respect to the order $\overline{0, n-1}$ of the function $f(x, y)$ given by formula (8), and assuming in them $x=a$, we obtain the equalities
$\frac{\partial^{i} f(a, y)}{\partial x^{i}}=i!\bar{\tau}_{i}(y)+\sum_{k=0}^{m-1} \tilde{\tau}_{k}^{(i)}(a)(y-c)^{k}, \quad i=\overline{0, n-2}$,
(10)

$$
\begin{align*}
& \frac{\partial^{n-1} f(a, y)}{\partial x^{n-1}}=\frac{1}{(m-1)!} \int_{c}^{y} \frac{\eta(s) d s}{(y-s)^{1-m}}+(n-1)!\bar{\tau}_{n-1}(y)+ \tag{11}\\
& +\sum_{k=0}^{m-1} \tilde{\tau}_{k}^{(n-1)}(a)(y-c)^{k} .
\end{align*}
$$

Similarly, differentiating (8) by y and assuming $y=c$, we obtain the equality
$\frac{\partial^{k} f(x, c)}{\partial y^{k}}=k!\tilde{\tau}_{k}(x)+\sum_{i=0}^{n-1} \tilde{\tau}_{i}^{(k)}(c)(x-a)^{i}, \quad k=\overline{0, m-2}$, (12)

$$
\begin{align*}
& \frac{\partial^{m-1} f(x, c)}{\partial y^{m-1}}=\frac{1}{(n-1)!} \int_{a}^{x} \frac{\psi(t) d t}{(x-t)^{1-n}}+(m-1)!\tilde{\tau}_{m-1}(y)+ \tag{13}\\
& +\sum_{i=0}^{n-1} \bar{\tau}_{i}^{(m-1)}(c)(x-a)^{i} .
\end{align*}
$$

Expressing from formulas (10) - (13) $\bar{\tau}_{i}(y)$ and $\tilde{\tau}_{k}(x)$ respectively, we get

$$
\begin{align*}
& \sum_{i=0}^{n-1} \bar{\tau}_{i}(y)(x-a)^{i}+\sum_{k=0}^{m-1} \tilde{\tau}_{k}(x)(y-c)^{k}= \\
& =\sum_{i=0}^{n-1} \frac{(x-a)^{i}}{i!}\left(\frac{\partial^{i} f(a, y)}{\partial x^{i}}-\sum_{k=0}^{m-1} \tilde{\tau}_{k}^{(i)}(x)(y-c)^{k}\right)+ \\
& +\sum_{k=0}^{m-1} \frac{(y-c)^{k}}{k!}\left(\frac{\partial^{k} f(x, c)}{\partial y^{k}}-\sum_{i=0}^{n-1} \bar{\tau}_{i}^{(k)}(y)(x-a)^{i}\right)- \\
& -\frac{(x-a)^{n-1}}{(n-1)!(m-1)!} \int_{c}^{y} \frac{\eta(s) d s}{(y-s)^{1-m}}- \\
& -\frac{(y-c)^{m-1}}{(n-1)!(m-1)!} \int_{a}^{x} \frac{\psi(t) d t}{(x-t)^{1-n}}=\sum_{i=0}^{n-1} \frac{(x-a)^{i}}{i!} \frac{\partial^{i} f(a, y)}{\partial x^{i}}+ \\
& +\sum_{k=0}^{m-1} \frac{(y-c)^{k}}{k!} \frac{\partial^{k} f(x, c)}{\partial y^{k}}- \\
& -\frac{(x-a)^{n-1}}{(n-1)!(m-1)!} \int_{c}^{y} \frac{\eta(s) d s}{(y-s)^{1-m}}-\frac{(y-c)^{m-1}}{(n-1)!(m-1)!} \int_{a}^{x} \frac{\psi(t) d t}{(x-t)^{1-n}}- \\
& -\sum_{i=0}^{n-1} \sum_{k=0}^{m-1}(x-a)^{i}(y-c)^{k}\left(\frac{\left.\bar{\tau}_{i}^{k}\right)(c)}{k!}+\frac{\tilde{\tau}_{k}^{(i)}(a)}{i!}\right) . \tag{14}
\end{align*}
$$

Calculating the mixed derivatives $\frac{\partial^{i+k} f}{\partial x^{i} \partial y^{k}}$ of the function (8) at a point (a, c), we get

$$
\begin{equation*}
\frac{1}{i!k!} \frac{\partial^{i+k} f(a, c)}{\partial x^{i} \partial y^{k}}=\frac{\bar{\tau}_{i}^{(k)}(c)}{k!}+\frac{\tilde{\tau}_{k}^{(i)}(a)}{i!} \tag{15}
\end{equation*}
$$

Substituting (14), (15) into (8), we get

$$
\begin{align*}
& f(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y} \frac{\varphi(t, s) d t d s}{(x-t)^{1-n}(y-s)^{1-m}}+ \\
& +\sum_{i=0}^{n-1} \frac{1}{i!} \frac{\partial^{i} f(a, y)}{\partial x^{i}}(x-a)^{i}+\sum_{k=0}^{m-1} \frac{1}{k!} \frac{\partial^{k} f(x, c)}{\partial y^{k}}(y-c)^{k}- \\
& -\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{1}{i!k!} \frac{\partial^{i+k} f(a, c)}{\partial x^{i} \partial y^{k}}(x-a)^{i}(y-c)^{k} . \tag{16}
\end{align*}
$$

Equality (6) follows from (16) and from the fact that $\varphi(x, y)=\frac{\partial^{m+n} f(a, c)}{\partial x^{n} \partial y^{m}}$. The lemma is proved.
The following lemma gives a description of the class $A C^{n, m}(\bar{\Omega})$. It generalizes Lemma 1 to the case of two variables and Lemma 2 to the case $n+m>2$.
Lemma 4. Space $A C^{n, m}(\bar{\Omega})$ consists of those and only those functions $f(x, y)$, which are represented in the form
$f(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y}(x-t)^{n-1}(y-s)^{m-1} \varphi(t, s) d t d s+$ $+\sum_{k=0}^{m-1} \frac{(y-c)^{k}}{(n-1)!k!} \int_{a}^{x}(x-t)^{n-1} \psi_{k}(t) d t+$
$+\sum_{i=0}^{n-1} \frac{(x-a)^{i}}{i!(m-1)!} \int_{c}^{y}(y-s)^{m-1} \eta(s) d s+$
$+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} C_{i k}(x-a)^{i}(y-c)^{k}$,
where $\quad \varphi(x, y) \in L_{1}(\Omega), \psi_{k}(x) \in L_{1}([a, b]) \quad(k=\overline{0, m-1})$,
$\eta(y) \in L_{1}([c, d]),(i=\overline{0, n-1}), \quad C_{i k} \quad$ being arbitrary constants.
Proof. Necessity. Let $f(x, y) \in A C^{n, m}(\bar{\Omega})$. According to the lemma 3
$f(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y} \frac{f^{(n, m)}(t, s)}{(x-t)^{1-n}(y-s)^{1-m}} d t d s+$
$+\sum_{i=0}^{n-1} \frac{f^{(i, 0)}(a, y)}{i!}(x-a)^{i}+\sum_{k=0}^{m-1} \frac{f^{(0, k)}(x, c)^{i}}{k!}(y-c)^{k}-$
$-\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{f^{(i, k)}(a, c)}{i!k!}(x-a)^{i}(y-c)^{k}$.
Because $\quad f^{(n-1, m-1)}(x, y) \in A C(\bar{\Omega})$, then
$f^{(n-1, m-1)}(a, y) \in A C([c, d]), \quad$ consequently, $f^{(n-1,0)}(a, y) \in A C^{m}([c, d]), \quad$ from \quad here $f^{(i, 0)}(a, y) \in A C^{m}([c, d]) \quad(i=\overline{0, n-1})$. Use lemma [1, c.39]
$f^{(i, 0)}(a, y)=\frac{1}{(m-1)!} \int_{c}^{y} \frac{\eta_{i}(s)}{(y-s)^{1-m}} d s+$
$+\sum_{k=0}^{m-1} \frac{f^{(i, k)}(a, c)}{k!}(y-c)^{k}$
where $\eta_{i}(y) \in L_{1}([c, d])$. Then
$\sum_{i=0}^{n-1} \frac{f^{(i, 0)}(a, y)}{i!}(x-a)^{i}=\sum_{i=0}^{n-1} \frac{(x-a)^{i}}{i!(m-1)!} \int_{c}^{y} \frac{\eta_{i}(s)}{(y-s)^{1-m}} d s+$

$$
+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{f^{(i, k)}(a, c)}{i!k!}(x-a)^{i}(y-c)^{k} .
$$

(20)

Similarly, it is proved that
$\sum_{k=0}^{m-1} \frac{f^{(0, k)}(x, c)}{k!}(y-c)^{k}=\sum_{k=0}^{m-1} \frac{(y-c)^{k}}{i k!(n-1)!} \int_{a}^{x} \frac{\psi_{k}(t)}{(x-t)^{1-m}} d t+$

$$
+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{f^{(i, k)}(a, c)}{i!k!}(x-a)^{i}(y-c)^{k} .
$$

(21)
where $\psi_{k}(x) \in L_{1}([a, b])$. Substituting (20), (21) into (18), we obtain the formula (17), in which

$$
\begin{equation*}
C_{i k}=\frac{1}{i!k!} f^{(i, k)}(a, c) . \tag{22}
\end{equation*}
$$

Sufficiency. When calculating directly $\frac{\partial^{i+k} f}{\partial x^{i} \partial y^{k}}$ ($0 \leq i<n, 0 \leq k<m$), it is easy to make sure that they are all continuous in $\bar{\Omega}$, and

$$
\begin{align*}
\frac{\partial^{n+m-2} f}{\partial x^{n-1} \partial y^{m-1}}= & \int_{a}^{x} \int_{c}^{y} \varphi(t, s) d t d s+\int_{a}^{x} \psi(t) d t+\int_{c}^{y} \eta(s) d s+ \tag{23}\\
& +(n-1)!(m-1)!c_{n-1, m-1} .
\end{align*}
$$

Obviously $\frac{\partial^{n+m-2} f}{\partial x^{n-1} \partial y^{m-1}} \in A C(\bar{\Omega})$, from where it follows $f(x, y) \in A C^{n, m}(\bar{\Omega})$.
The theorem is proven completely.
Notice, that
$\varphi(x, y)=f^{(n, m)}(x, y)$;
$\Psi_{k}(x)=f^{(n, k)}(x, c), \quad k=\overline{0, m-1} ;$
$\eta_{i}(y)=f^{(i, m)}(a, y), i=\overline{0, n-1} ;$
$C_{i k}=\frac{1}{i!k!} f^{(i, k)}(a, c)$.
Definition 5 [1, c. 459]. Let $f(x, y) \in L_{1}(\Omega)$. The integral

$$
\begin{equation*}
\left(I_{a+, c+}^{\alpha, \beta} f\right)(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{x} \int_{c}^{y} \frac{f(t, s) d t d s}{(x-t)^{1-\alpha}(y-s)^{1-\beta}}, \tag{28}
\end{equation*}
$$

where $\alpha>0, \beta>0$, is called a left-hand sided mixed Riemann-Liouville fractional integral of order (α, β). The fractional integral (28) is obviously defined on functions $f(x, y) \in L_{1}(\Omega)$, existing almost everywhere. Using the Fubini theorem, the semigroup property is proved.
Let $f(x, y) \in L_{1}(\Omega), \alpha, \beta, \gamma, \delta$ be positive numbers, then equality holds almost everywhere in Ω
$I_{a+, c+}^{\alpha, \beta} I_{a+c, c+}^{\gamma, \delta} f=I_{a+, c+}^{\alpha+\gamma, \beta+\delta} f$.
It can be shown that if $\alpha>0$ the function $f(x, y)$ is defined in Ω and $f(x, y) \in L_{1}(\Omega)$, then
$\left(I_{a+, x}^{\alpha}\right)(x, y) \in L_{1}([c, d]) \quad \forall x \in(a, b) ;$
$\left(I_{a+, y}^{\alpha}\right)(x, y) \in L_{1}([a, b]) \forall y \in(c, d)$.
In the last equations $I_{a+, x}^{\alpha} f, I_{a+, y}^{\alpha} f$ are partial Riemann - Liouville fractional integrals with respect to the variables x and y, respectively.

Taking these equalities into account, it is directly verified that $\left(I_{a+, x}^{\alpha} I_{c+, y}^{\beta} f\right)(x, y)=\left(I_{c+, y}^{\beta} I_{a+, x}^{\alpha} f\right)(x, y)=\left(I_{a+, c+}^{\alpha, \beta} f\right)(x, y)$.
(30)

Definition 6 [1, c. 460]. For function $f(x, y)$, given on Ω, formula
$\left(\mathrm{D}_{a+,+c}^{\alpha, \beta} f\right)(x, y)=\frac{1}{\Gamma(n-\alpha) \Gamma(m-\beta)} \times$
$\times \frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}} \int_{a}^{x} \int_{c}^{y} \frac{f(t, s) d t d s}{(x-t)^{\alpha-n+1}(y-s)^{\beta-m+1}}$
where $\alpha>0, \beta>0$, is called a mixed RiemannLiouville fractional derivative of order $(\alpha, \beta), n=[\alpha]+1, m=[\beta]+1$.
If the function $f(x, y)$ has a property $I_{a+, c+}^{n-\alpha, m-\beta} f \in A C^{n, m}(\bar{\Omega})$, then the order of taking the derivatives in (31) does not matter, and $\left(\mathrm{D}_{a+, c+}^{\alpha, \beta} f\right)(x, y) \in L_{1}(\Omega)$.

Definition 7 is a two-dimensional analogue of Definition 2.3 [1, p. 43].

3. Compositions of mixed fractional integral and mixed fractional derivative of the same order

Following [1, p. 44], we define the following classes of functions.
Definition 7. Let $I_{a+, c+}^{\alpha, \beta}\left(L_{1}\right)$ denote the space of function $f(x, y)$, represented by the left-sided mixed fractional integral of the order (α, β) of a summable function: $f=I_{a+, c+}^{\alpha, \beta} \varphi, \varphi \in L_{1}(\Omega)$.
Definition 8. Let $0<\alpha<1,0<\beta<1$. A function $f(x, y) \in L_{1}(\Omega)$ is said to have a summable fractional derivative $\mathrm{D}_{a+, c+}^{\alpha, \beta} f$, if $I_{a+, c+}^{n-\alpha, m-\beta} f \in A C^{n, m}(\bar{\Omega})$.
The following theorem defines the necessary and sufficient condition for the unique solvability of the two-dimensional Abel integral equation.
Theorem 1. In order that $f(x, y) \in I_{a+, c+}^{\alpha, \beta}\left(L_{1}\right), \alpha>0, \beta>0$, it is necessary and sufficient that

$$
\begin{equation*}
f_{n-\alpha, m-\beta} \in A C^{n, m}(\bar{\Omega}), \tag{32}
\end{equation*}
$$

where $n=[\alpha]+1, m=[\beta]+1$, and that

$$
\begin{align*}
& f_{n-\alpha, m-\beta}^{(i, 0)}(a, y) \equiv 0, \quad i=\overline{0, n-1} ; \tag{33}\\
& f_{n-\alpha, m-\beta}^{(0, k)}(x, c) \equiv 0, \quad k=\overline{0, m-1} ; \tag{34}\\
& f_{n-\alpha, m-\beta}^{(i, k)}(a, c) \equiv 0, \quad i=\overline{0, n-1}, \quad k=\overline{0, m-1} . \tag{35}
\end{align*}
$$

Proof. Necessity. Let $f=I_{a+c+}^{\alpha, \beta} \varphi, \varphi \in L_{1}(\Omega)$. In view of the semigroup property
$f_{n-\alpha, m-\beta}(x, y)=I_{a+, c+}^{n-\alpha, m-\beta} f=I_{a+c+}^{\alpha, \beta} \varphi$,
where $\varphi \in L_{1}(\Omega)$. From here follow feasibility conditions (33) - (35). Feasibility condition (32) follow from Lemma 4.
This implies the fulfillment of conditions (33) - (35). The fulfillment of condition (32) follows from Lemma 4.
Sufficiency. Under condition (32), we can present $f_{n-\alpha, m-\beta}$ according to Lemma 3, in the form

$$
\begin{align*}
& f_{n-\alpha, m-\beta}(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y} \frac{f_{n-\alpha, m-\beta}^{(n, m)}(t, s)}{(x-t)^{1-n}(y-s)^{1-m}} d t d s+ \\
& +\sum_{i=0}^{n-1} \frac{f_{n-\alpha, m-\beta}^{(i, 0)}(a, y)}{i!}(x-a)^{i}+\sum_{k=0}^{m-1} \frac{f_{n-\alpha, m-\beta}^{(0, k)}(x, c)}{k!}(y-c)^{k}- \\
& -\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{f_{n-\alpha, m-\beta}^{(i, k)}(a, c)}{k!}(x-a)^{i}(y-c)^{k}, \tag{37}
\end{align*}
$$

where $\quad f_{n-\alpha, m-\beta}^{(n, m)} \in L_{1}(\Omega)$. Taking into account conditions (33) - (35), the last equality is written in the form
$f_{n-\alpha, m-\beta}(x, y)=\frac{1}{(n-1)!(m-1)!} \int_{a}^{x} \int_{c}^{y} \frac{f_{n-\alpha, m-\beta}^{(n, m)}(t, s)}{(x-t)^{1-n}(y-s)^{1-m}} d t d s$
(38)

Using the semigroup property (29), we can write $I_{a+, c+}^{n-\alpha, m-\beta} f=I_{a+, c+}^{n, m} f_{n-\alpha, m-\beta}^{(n, m)}=I_{a+, c+}^{n-\alpha, m-\beta} I_{a+, c+}^{\alpha, \beta} f_{n-\alpha, m-\beta}^{(n, m)}$.

(39)

From here $I_{a+, c+}^{n-\alpha, m-\beta}\left(f-I_{a+, c+}^{\alpha, \beta} f_{n-\alpha, m-\beta}^{(n, m)}\right)=0$. Applying the integral to this equality $I_{a+, c^{+}}^{\alpha, \beta}$, we get
$I_{a+, c+}^{n, m}\left(f-I_{a+, c+}^{\alpha, \beta} f_{n-\alpha, m-\beta}^{(n, m)}\right) d x d y=0$.
From here $f=I_{a+, c+}^{\alpha, \beta} f_{n-\alpha, m-\beta}^{(n, m)}, \quad f_{n-\alpha, m-\beta}^{(n, m)} \in L_{1}(\Omega)$. The theorem is proved.
Note that Theorem 1 is a generalization of Theorem 2.3 [1, p. 43] in the case of two variables. From it, in particular, it follows that the class of functions having a summable fractional derivative $\mathrm{D}_{a+, c+}^{\alpha, \beta} f$ in the sense of Definition 8 is wider than the class of functions $I_{a+, c+}^{\alpha, \beta}\left(L_{1}\right)$. Namely, the class $I_{a+, c+}^{\alpha, \beta}\left(L_{1}\right)$ owns only those functions that have a summable fractional derivative $\mathrm{D}_{a+, c+}^{\alpha, \beta} f$, for which equalities (33) - (35) hold.

Theorem 2. Let $\alpha>0, \beta>0$. Then equality
$\mathrm{D}_{a+, c+}^{\alpha, \beta} I_{a+, c+}^{\alpha, \beta} f=f(x, y)$
performed for any summable function $f(x, y)$.
Proof. We have
$\mathrm{D}_{a+, c+}^{\alpha, \beta} I_{a+, c+}^{\alpha, \beta} f=\frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}} I_{a+, c+}^{n-\alpha, m-\beta} I_{a+, c+}^{\alpha, \beta} f=$
$=\frac{1}{\Gamma(\alpha) \Gamma(\beta) \Gamma(n-\alpha) \Gamma(m-\beta)} \frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}} \int_{a}^{x} \int_{c}^{y} \frac{d t d s}{(x-t)^{\alpha}(y-s)^{\beta}} \times$
$\times \int_{a}^{t} \int_{c}^{s} \frac{f(u, v) d u d v}{(t-u)^{n-\alpha}(s-v)^{m-\beta}}$
Changing the order of integration, we get
$\mathrm{D}_{a+, c+}^{\alpha, \beta} I_{a+, c+}^{\alpha, \beta} f=\frac{(\Gamma(\alpha) \Gamma(\beta))^{-1}}{\Gamma(n-\alpha) \Gamma(m-\beta)} \frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}} \int_{a}^{x} \int_{c}^{y} f(u, v) d u d v \times$
$\times \int_{u}^{x} \int_{v}^{y} \frac{d t d s}{(x-t)^{\alpha}(y-s)^{\beta}(t-u)^{n-\alpha}(s-v)^{m-\beta}}=$
$=\frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}} \int_{a}^{x} \int_{c}^{y} f(u, v) d u d v \frac{1}{\Gamma(\alpha) \Gamma(n-\alpha)} \times$
$\times \int_{u}^{x} \frac{d t}{(x-t)^{\alpha}(t-u)^{n-\alpha}} \frac{1}{\Gamma(\beta) \Gamma(m-\beta)} \int_{v}^{y} \frac{d s}{(y-s)^{\beta}(s-v)^{m-\beta}}=$
$=\frac{1}{\Gamma(n) \Gamma(m)} \frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}} \int_{a}^{x} \int_{c}^{y} \frac{f(u, v)}{(x-u)^{1-n}(y-v)^{1-m}} d u d v=$

$$
\begin{equation*}
=f(x, y) \tag{43}
\end{equation*}
$$

Q.E.D.

Theorem 3. For any function $f(x, y) \in I_{a+, c+}^{\alpha, \beta}\left(L_{1}\right)$ the equality
$I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+, c+}^{\alpha, \beta} f=f(x, y)$,
and for any function that has a summable derivative $\mathrm{D}_{a+, c+}^{\alpha, \beta} f$ (in the sense of definition 8), the equality
$I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+c+}^{\alpha, \beta} f=f(x, y)-\sum_{i=0}^{n-1} \frac{(x-a)^{\alpha-i-1}}{\Gamma(\alpha-i)} f_{n-\alpha, 0}^{(n-i-1,0)}(a, y)-$
$-\sum_{k=0}^{m-1} \frac{(y-c)^{\beta-k-1}}{\Gamma(\beta-k)} f_{0, m-\beta}^{(0, m-k-1)}(x, c)+$
$+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{(x-a)^{\alpha-i-1}(y-c)^{\beta-k-1}}{\Gamma(\alpha-i) \Gamma(\beta-k)} f_{n-\alpha, m-\beta}^{(n-i-1, m-k-1)}(a, c)$,
(45)
where $f_{\gamma, \delta}(x, y)=I_{a+, c+}^{\gamma, \delta} f$.
Proof. Let $f(x, y) \in I_{a+, c+}^{\alpha, \beta}\left(L_{1}\right)$, then $f(x, y)=I_{a+, c+}^{\alpha, \beta} \varphi$, $\varphi(x, y) \in L_{1}(\Omega)$. Based on Theorem 2, we have $I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+, c+}^{\alpha, \beta} f=I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+, c+}^{\alpha, \beta} I_{a+, c+}^{\alpha, \beta} \varphi=I_{a+, c+}^{\alpha, \beta} \varphi=f(x, y)$.
(46)

Let now $I_{a+, c+}^{1-\alpha, 1-\beta} f \in A C(\bar{\Omega})$. According to Lemma 3, the integral $f_{n-\alpha, m-\beta}(x, y)=I_{a+, c+}^{n-\alpha, m-\beta} f \quad$ can be represented as

$$
\begin{align*}
f_{n-\alpha, m-\beta}(x, y)= & I_{a+, c+}^{n, m} f_{n-\alpha, m-\beta}^{(n, m)}+\sum_{i=0}^{n-1} \frac{f_{n-\alpha, m-\beta}^{(i, 0)}(a, y)}{i!}(x-a)^{i}+ \\
& +\sum_{k=0}^{m-1} \frac{f_{n-\alpha, m-\beta}^{(0, k)}(x, c)}{k!}(y-c)^{k}- \\
- & \sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{f_{n-\alpha, m-\beta}^{(i, k)}(a, c)}{k!i!}(x-a)^{i}(y-c)^{k} . \tag{47}
\end{align*}
$$

By the semigroup property, the equality
$I_{a+, c+}^{n, m} f_{n-\alpha, m-\beta}^{(n, m)}=I_{a+, c+}^{n-\alpha, m-\beta} I_{a+, c+}^{\alpha, \beta} f_{n-\alpha, m-\beta}^{(n, m)}$.
Further,

$$
\begin{align*}
& \quad \frac{(x-a)^{i}}{i!} f_{n-\alpha, m-\beta}^{(i, 0)}(a, y)= \\
& =I_{a+, c+}^{n-\alpha, m-\beta}\left(\mathrm{D}_{a+, x}^{n-\alpha} \frac{(x-a)^{i}}{i!} \mathrm{D}_{c+, y}^{m-\beta} f_{n-\alpha, m-\beta}^{(i, 0)}(a, y)\right)+ \\
& +\frac{(x-a)^{i}(y-c)^{m-\beta-1}}{i!\Gamma(m-\beta)} f_{n-\alpha, 1}^{(i, 0)}(a, c)= \\
& =I_{a+, c+}^{n-\alpha, m-\beta}\left(\frac{(x-a)^{i-n+\alpha}}{\Gamma(1+i-n+\alpha)} f_{n-\alpha, 0}^{(i, 0)}(a, y)\right)+ \\
& +\frac{(x-a)^{i}(y-c)^{m-\beta-1}}{i!\Gamma(m-\beta)} f_{n-\alpha, 1}^{(i, 0)}(a, c) . \tag{49}
\end{align*}
$$

From the last equality it follows that
$\sum_{i=0}^{n-1} \frac{f_{n-\alpha, m-\beta}^{(i, 0)}(a, y)}{i!}(x-a)^{i}=$
$=I_{a+, c+}^{n-\alpha, m-\beta}\left(\sum_{i=0}^{n-1} \frac{(x-a)^{i-n+\alpha}}{\Gamma(1+i-n+\alpha)} f_{n-\alpha, 0}^{(i, 0)}(a, y)\right)+$
$+\sum_{i=0}^{n-1} \frac{(x-a)^{i}(y-c)^{m-\beta-1}}{i!\Gamma(m-\beta)} f_{n-\alpha, 1}^{(i, 0)}(a, c)$,
from where, redesignating the summation index, we get

$$
\begin{align*}
& \sum_{i=0}^{n-1} \frac{f_{n-\alpha, m-\beta}^{(i, 0)}(a, y)}{i!}(x-a)^{i}= \\
& =I_{a+, c+\infty}^{n-\alpha, \beta}\left(\sum_{i=0}^{n-1} \frac{(x-a)^{\alpha-i-1}}{\Gamma(\alpha-i)} f_{n-\alpha, 0}^{(n-i-1,0)}(a, y)\right)+ \\
& +\sum_{i=0}^{n-1} \frac{(x-a)^{i}(y-c)^{m-\beta-1}}{i!\Gamma(m-\beta)} f_{n-\alpha, 1}^{(i, 0)}(a, c) . \tag{51}
\end{align*}
$$

Equality is obtained similarly

$$
\begin{gather*}
\sum_{i=0}^{n-1} \frac{f_{n-\alpha, m-\beta}^{(0, k}(x, c)}{i!}(y-c)^{k}= \\
=I_{a+, c+}^{n-\alpha-\beta-\beta}\left(\sum_{k=0}^{m-1} \frac{(y-c)^{\beta-k-1}}{\Gamma(\beta-k)} f_{0, m-\beta}^{(0, m-k-1)}(x, c)\right)+ \\
+\sum_{k=0}^{m-1} \frac{(x-a)^{n-\alpha-1}(y-c)^{k}}{k!\Gamma(n-\alpha)} f_{1, m-\beta}^{(0, k)}(a, c) . \tag{52}
\end{gather*}
$$

It is not difficult to see that

$$
\begin{aligned}
& \quad \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \frac{f_{n-\alpha, m-\beta}^{(i, k}(a, c)}{i!k!}(x-a)^{i}(y-c)^{k}= \\
& =I_{a+, c+}^{n-\alpha, m-\beta}\left(\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} I_{a+, c+}^{n-\alpha, m-\beta}\left(\frac{(x-a)^{i}(y-c)^{k}}{i!k!}\right) f_{n-\alpha, m-\beta}^{(i, k)}(a, c)\right)= \\
& =I_{a+, c+c}^{n-\alpha, m-\beta}\left(\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{(x-a)^{\alpha-i-1}(y-c)^{\beta-k-1}}{\Gamma(\alpha-i) \Gamma(\beta-k)} f_{n-\alpha, m-\beta}^{(n-i,-m-k-1)}(a, c)\right) .
\end{aligned}
$$

(53)

Taking into account equalities (48), (51) - (53), equality (47) is written in the form

$$
\begin{align*}
& I_{a+, c+}^{n-\alpha, m-\beta} f=I_{a+c+c}^{n-\alpha, m-\beta} I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+,++}^{\alpha, \beta} f+ \\
& +I_{a+, c+}^{n-\alpha, m-\beta}\left(\sum_{i=0}^{n-1} \frac{(x-a)^{\alpha-i-1}}{\Gamma(\alpha-i)} f_{n-\alpha, 0}^{(n-i-1,0)}(a, y)\right)+ \\
& +\sum_{i=0}^{n-1} \frac{(x-a)^{i}(y-c)^{m-\beta-1}}{i!\Gamma(m-\beta)} f_{n-\alpha, 1}^{(i, 0)}(a, c)+ \\
& +I_{a+, c+}^{n-\alpha, m-\beta}\left(\sum_{k=0}^{m-1} \frac{(y-c)^{\beta-k-1}}{\Gamma(\beta-k)} f_{0, m-\beta}^{(0, m-k-1)}(x, c)\right)+ \\
& +\sum_{k=0}^{m-1} \frac{(x-a)^{n-\alpha-1}(y-c)^{k}}{k!\Gamma(n-\alpha)} f_{1, m-\beta}^{(0, k)}(a, c)- \\
& -I_{a+, c+}^{n-\alpha, m-\beta}\left(\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{(x-a)^{\alpha-i-1}(y-c)^{\beta-k-1}}{\Gamma(\alpha-i) \Gamma(\beta-k)} f_{n-\alpha, m-\beta}^{(n-i-1, m-k-1)}(a, c)\right) \tag{54}
\end{align*}
$$

By grouping the terms, we get

$$
\begin{aligned}
& I_{a+, c+}^{n-\alpha, \beta-\beta}\left(f-I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+, c+}^{\alpha, \beta} f-\sum_{i=0}^{n-1} \frac{(x-a)^{\alpha-i-1}}{\Gamma(\alpha-i)} f_{n-\alpha, 0}^{(n-i-1,0)}(a, y)-\right. \\
& -\sum_{k=0}^{m-1} \frac{(y-c)^{\beta-k-1}}{\Gamma(\beta-k)} f_{0, m-\beta}^{(0, m-k-1)}(x, c)+
\end{aligned}
$$

$\left.+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{(x-a)^{\alpha-i-1}(y-c)^{\beta-k-1}}{\Gamma(\alpha-i) \Gamma(\beta-k)} f_{n-\alpha, m-\beta}^{(n-i-, m-k-1)}(a, c)\right)=$
$=\sum_{i=0}^{n-1} \frac{(x-a)^{i}(y-c)^{m-\beta-1}}{i!\Gamma(m-k)} f_{n-\alpha, 1}^{(i, 0)}(a, c)+$
$+\sum_{k=0}^{m-1} \frac{(y-c)^{k}(x-a)^{n-\alpha-1}}{k!\Gamma(n-\alpha)} f_{1, m-\beta}^{(0, k)}(a, c)$
In the right-hand side of equality (55), under the integral is a summable function. Applying the operator $I_{a+, c+}^{\alpha, \beta}$ to both parts of equality (55), we obtain
$I_{a+, c+}^{n, m}\left(f-I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+, c+}^{\alpha, \beta} f-\sum_{i=0}^{n-1} \frac{(x-a)^{\alpha-i-1}}{\Gamma(\alpha-i)} f_{n-\alpha, 0}^{(n-i-1,0)}(a, y)-\right.$
$-\sum_{k=0}^{m-1} \frac{(y-c)^{\beta-k-1}}{\Gamma(\beta-k)} f_{0, m-\beta}^{(0, m-k-1)}(x, c)+$
$\left.+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{(x-a)^{\alpha-i-1}(y-c)^{\beta-k-1}}{\Gamma(\alpha-i) \Gamma(\beta-k)} f_{n-\alpha, m-\beta}^{(n-i-1, m-k-1)}(a, c)\right)=$
$=\sum_{i=0}^{n-1} \frac{(x-a)^{i+\alpha}(y-c)^{m-1}}{\Gamma(i+\alpha+1) \Gamma(m)} f_{n-\alpha, 1}^{(i, 0)}(a, c)+$
$+\sum_{k=0}^{m-1} \frac{(y-c)^{k+\beta}(x-a)^{n-1}}{\Gamma(k+1+\beta) \Gamma(n)} f_{1, m-\beta}^{(0, k)}(a, c)$
Under the integral on the left side of the equality is the summable function, and the right side of the equality is absolutely continuous. Finding the mixed derivative $\frac{\partial^{n+m}}{\partial x^{n} \partial y^{m}}$ of both parts of the equality, we get
$f-I_{a+, c+}^{\alpha, \beta} \mathrm{D}_{a+, c+}^{\alpha, \beta} f-\sum_{i=0}^{n-1} \frac{(x-a)^{\alpha-i-1}}{\Gamma(\alpha-i)} f_{n-\alpha, 0}^{(n-i-1,0)}(a, y)-$
$-\sum_{k=0}^{m-1} \frac{(y-c)^{\beta-k-1}}{\Gamma(\beta-k)} f_{0, m-\beta}^{(0, m-k-1)}(x, c)+$
$+\sum_{i=0}^{n-1} \sum_{k=0}^{m-1} \frac{(x-a)^{\alpha-i-1}(y-c)^{\beta-k-1}}{\Gamma(\alpha-i) \Gamma(\beta-k)} f_{n-\alpha, m-\beta}^{(n-i, m-k-1)}(a, c)=0$.
(57)

The theorem is proved.

References

i. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon\&Breach. Sci. Publ., N.York-London, 1993, 1012 pp (book style)
ii. S. Vasilache, Asupra unei ecuatii integrale de tip Abel cu doua variable.//Comun. Acad.R.P.Romane, 1953. Vol. 3. P. 109-113 (journal style)
iii. V. I. Smirnov, Higher mathematics course. T. 5. M.: OGIZ, 1947. 584 p. (book style)
iv. T. Mamatov and S. Samko, "Mixed fractional integration operators in mixed weighted Hölder spaces", Fractional Calculus \&Applied Analysis (FCAA), vol.13, № 3 (2010), pp. 245259. (journal style)
v. T. Mamatov, "Mapping Properties Of Mixed Fractional Integro-Differentiation in Hölder Spaces", Journal of Concrete and Applicable Mathematics(JCAAM). Volume 12, Num.3-4. 2014. p. 272-290 (journal style)
vi. T. Mamatov, Mapping Properties of Mixed Fractional Differentiation Operators in Hölder Spaces Defined by Usual Hölder Condition, Journal of Computer Science \& Computational Mathematics, Volume 9, Issue 2, June 2019. DOI: 10.20967/jcscm.2019.02.003 (journal style)
vii. T. Mamatov, D. Rayimov, and M. Elmurodov, Mixed Fractioanl Differentiation Operators in Hölder Spaces. Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 6 Issue 4, April - 2019. P. 9855-9857 (journal style)
viii. T. Mamatov, F. Homidov, and D. Rayimov, On Isomorphism Implemented by Mixed Fractional Integrals In Hölder Spaces, International Journal of Development Research, Vol. 09, Issue, 05 (2019) pp. 27720-27730 (journal style)
ix. T. Mamatov, Weighted Zygmund estimates for mixed fractional integration. Case Studies Journal ISSN (2305-509X) - Volume 7, Issue 5-May-2018. (journal style)
x. T. Mamatov, Mixed Fractional Integration In Mixed Weighted Generalized Hölder Spaces. Case Studies Journal ISSN (2305-509X) Volume 7, Issue 6-June-2018. (journal style)
xi. T. Mamatov, Mixed fractional integration operators in Hölder spaces (Russian). «Science and World». Volgograd, № 1 (1). 2013, P. 3038 (journal style)
xii. T. Mamatov, Mixed Fractional IntegroDifferentiation Operators in Hölder Spaces. The latest research in modren science: experience, traditions and innovations. Proceedings of the VII International Scientific Conference. Section I. North Charleston, SC, USA. 20-21 June, P. 6-9, 2018. (conference style)
xiii. T.Mamatov and D.Rahimov, Some properties of mixed fractional integro-differentiation operators in Hölder spaces. Journal of Global Research in Mathematical Archives Volume 6, No.11, November 2019. pp.13-22. [Online].

Available: http://www.jgrma.info. (General Internet site)

Author Profile

<Author Photo>

Taro Denshi received the B.S. and M.S. degrees in Electrical Engineering from the Shibaura Institute of Technology in 1997 and 1999, respectively. During 1997-1999, he stayed in Communications Research Laboratory (CRL), Ministry of Posts and Telecommunications of Japan to study digital beamforming antennas, mobile satellite communication systems, and wireless access network using stratospheric platforms. He now with DDI Tokyo Pocket Telephone, Inc.

