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1. Introduction 

 

Various forms of fractional integrals and derivatives 

are known. Fractional integrals and Riemann-

Liouville derivatives are the most common in the 

scientific literature [1]. Operators of generalized 

fractional integro-differentiation with Gauss 

hypergeometric function. 

Direct extension of the Riemann-Liouville fractional 

integro-differentiation operations to the case of 

many variables, when these operators are applied for 

each variable or some of them, gives the so-called 

partial and mixed fractional integrals and 

derivatives. They are known [1], as well as [4], [5], 

[6], [7], [8], [9], [10], [11], [12], [13]. Thus, in [2], 

using the two-dimensional Laplace transform, a 

solution of the two-dimensional Abel integral 

equation was obtained. 

In this paper, we study the question of the 

composition of the mixed fractional integral and the 

mixed fractional derivative in a sufficiently broad 

class of functions. The treatment formula for the 

mixed fractional derivative is obtained. The results 

obtained can be applied in the theory of differential 

equations containing the mixed fractional 

derivatives.  

Lemma 3 on the representability of     mnACyxf ,,  

function in the form of (6) and Lemma 4 generalized 

is the previously known Lemmas 1 and 2 for the 

two-dimensional case. Lemmas 3, 4 permits to prove 

the theorem (a necessary and sufficient condition for 

the representability of  yxf ,
 
function as the mixed 

fractional integral of a summable function) and 

Theorems 2 and 3 about the composition of a mixed 

fractional integral and a mixed fractional derivative. 

Note that Theorems 2 and 3 generalize the results of 

Theorem 2.4 [1, p. 44] for the two-dimensional case. 

 

2. Preliminaries 

 

The important role in the theory of fractional integro 

differentiation is played by absolutely continuous 

functions. 

Let   dycbxayx  ,:, ,  

 dcba ,  

Definition 1 [1, p. 2].  xf  the function
 
is called 

absolutely non-discontinuous into segments ],[ ba if, 

for any, 0 there exists 0  such that for any 

finite set of pairwise non-intersecting intervals 

  ],[, baba kk  , mk ,1 such that   


m

k

kk ab

1

the 

inequality     


m

k

kk afbf

1

 holds. The space of 

these functions is denoted by  ],[ baAC . 

Definition 2 [1, p. 2]. Let us denote by  ],[ baACn , 

where ...,2,1n , the spaces of functions  xf  that 

have continuous derivatives up to order 1n  on 

],[ ba  with     ],[1 baACxf n  . 

Definition 3. A function  yxf ,  is called absolutely 

continuous in  if for any 0  there exists 0  

such that for any finite set of pairwise non-

intersecting intervals 

  kkkkk yyyxxxyx 2121 ,:,  , the sum of the 

areas of which is less  , the inequality holds 

        


n

k

kkkkkkkk yxfyxfyxfyxf

1

11211222 ,,,, ,(1) 

and if, moreover,    ],[, dcACyaf 
 

and 

   ],[, baACcxf  . The class of all such functions is 

indicated  AC . 

Definition 4. By  mnAC , , where ...,2,1n , let us 

denote the class of functions continuously 

differentiable on   up to order  1,1  mn , and its 

mixed partial derivative 
11

2








mn

mn

yx

f
 is absolutely 

continuous in  . 
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It is known that the class  ],[ baACn  belongs to those 

and only those functions  xf  that are representable 

as antiderivatives of Lebesgue summable functions: 

       baLxCdxxxf

x

a

,, 1  .   (2) 

Lemma 1 [1, p. 39]. Space  ],[ baACn  consists of 

those and only those functions  xf , which are 

represented in the form 

 
 

     










1

0

1

!1

1
n

k

k
k

x

a

n
axCdtttx

n
xf ,    (3) 

where    ],[1 baLx   kC  being arbitrary constants. 

In the formula (3) 

    
  

!
,

k

af
Ctft

k

k
n  .      (4) 

The last equality uses the notation   
 
n

n
n

dx

xfd
xf  . 

A similar property of the functions     ACyxf ,  is 

as follows. 

Lemma 2 [3, p. 238]. The class  AC  consists of 

those and only those functions  yxf ,
 

which are 

represented in the form 

        Cdssdttdtdsstyxf

y

c

x

a

y

c

x

a

  ,, ,   (5) 

where            ],[,],[,, 111 dcLybaLxLyx  , 

and C  is an arbitrary constant. 

In order to generalize the last lemma to the case of a 

class  nnAC , , we need the following lemma. 

Lemma 3. Let     ACyxf , , then  
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In formula (6) the notation used  
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dydx

yxfd
yxf
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 Proof. Let be  
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2

. By virtue of 

Lemma 2, we have 
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mn
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 (7) 

Integrating (7) times sequentially 1n  by x  and 

times 1m  by y , we get 
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where        1,0~,1,0  mkxniy ki  is an arbitrary 

function. When integrating, the well-known for n  - 

multiple integral formulae is used [1] 
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dxxFdxdx
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... ,   (9) 

proof, which is easy to implement by mathematical 

induction. It will be clear from the proof that an 

arbitrary constant in formula (7) is associated with 

arbitrary functions of formula (8) by the relation 

          0
1

1
1

1
~!1!1 Camcn n

m
m
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 . 

Since     mnACyxf ,, , then derivatives 

 mkni
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f
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0,0

 

exist and are continuous 

in  . Calculating the derivatives with x  respect to 

the order 1,0 n
 

of the function  yxf ,  given by 

formula (8), and assuming in them ax  , we obtain 

the equalities 
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 (10) 
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Similarly, differentiating (8) by y  and assuming 

cy  , we obtain the equality 
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 (12) 
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Expressing from formulas (10) - (13)  yi  and  xk
~

 
respectively, we get 
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Calculating the mixed derivatives 
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of the 

function (8) at a point  ca, , we get 
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Substituting (14), (15) into (8), we get 
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Equality (6) follows from (16) and from the fact that 
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 ,
, . The lemma is proved. 

The following lemma gives a description of the class 

 mnAC , . It generalizes Lemma 1 to the case of two 

variables and Lemma 2 to the case 2mn . 

Lemma 4. Space  mnAC ,  consists of those and 

only those functions  yxf , , which are represented 

in the form 
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where        ],[,, 11 baLxLyx k    1,0  mk , 

     1,0,],[1  nidcLy ,  ikC  being arbitrary 

constants. 

Proof.  Necessity. Let     mnACyxf ,, . According 

to the lemma 3 
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Because      ACyxf mn ,1,1 , then 
    ],[,1,1 dcACyaf mn  , consequently, 
    ],[,0,1 dcACyaf mn  , from here 
    ],[,0, dcACyaf mi    1,0  ni . Use lemma [1, 

с.39] 
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where    ],[1 dcLyi  . Then  
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Similarly, it is proved that 
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where    ],[1 baLxk  . Substituting (20), (21) into 

(18), we obtain the formula  (17), in which 

  caf
ki

C ki
ik ,
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1 , .    (22) 

Sufficiency. When calculating directly 
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 mkni  0,0 , it is easy to make sure that they 

are all continuous in  , and 
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Obviously  







AC
yx

f
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mn
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2

, from where it follows 

    mnACyxf ,, . 

The theorem is proven completely. 

Notice, that 

     ;,, , yxfyx mn         (24) 

     1,0,,,  mkcxfx kn
k ;   (25) 

     1,0,,,  niyafy mi
i ;    (26) 

  caf
ki

C ki
ik ,

!!

1 , .        (27) 

Definition 5 [1, с. 459]. Let     1, Lyxf . The 

integral 
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dtdsstf
yxfI

11

,
,

,1
, ,   (28) 

where 0,0  , is called a left-hand sided mixed 

Riemann-Liouville fractional integral of order  , . 

The fractional integral (28) is obviously defined on 

functions     1, Lyxf , existing almost everywhere. 

Using the Fubini theorem, the semigroup property is 

proved. 

Let     1, Lyxf ,  ,,,  be positive numbers, then 

equality holds almost everywhere in   

.,
,

,
,

,
, fIfII cacaca








 

   
  (29) 

It can be shown that if 0  the function  yxf ,
 
is 

defined in   and     1, Lyxf , then 

      baxdcLyxI xa ,],[, 1, 
 ; 

      dcybaLyxI ya ,],[, 1, 
 . 

In the last equations fIfI yaxa




 ,, ,  are partial 

Riemann – Liouville fractional integrals with respect 

to the variables x  and y , respectively. 

Taking these equalities into account, it is 

directly verified that 

        yxfIyxfIIyxfII caxaycycxa ,,, ,
,,,,,













  . 

 (30) 

Definition 6 [1, с. 460]. For function  yxf , , given 

on  , formula  
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      (31) 

where 0,0  , is called a mixed Riemann-

Liouville fractional derivative of order 

  1][,1][,,  mn . 

If the function  yxf ,  has a property 

 


mnmn
ca ACfI ,,

, , then the order of taking the 

derivatives in (31) does not matter, and 

    
 1

,
, ,D Lyxfca  .  

Definition 7 is a two-dimensional analogue of 

Definition 2.3 [1, p. 43]. 

 

3. Compositions of mixed fractional integral and 

mixed fractional derivative of the same order  

 

Following [1, p. 44], we define the following classes 

of functions. 

Definition 7. Let  1
,
, LI ca

  denote the space of 

function  yxf , , represented by the left-sided mixed 

fractional integral of the order  ,  of a summable 

function:   
 1

,
, , LIf ca . 

Definition 8. Let 10,10  . A function 

    1, Lyxf  is said to have a summable fractional 

derivative fca



,
,D , if   


mnmn

ca ACfI ,,
, . 

The following theorem defines the necessary and 

sufficient condition for the unique solvability of the 

two-dimensional Abel integral equation. 

Theorem 1. In order that 

    0,0,, 1
,
,  
 LIyxf ca , it is necessary and 

sufficient that 
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mn ACf ,
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where 1][,1][  mn , and that 
    1,0,0,
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,  niyaf

i
mn ;        (33) 

    1,0,0,
,0
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k

mn  ;       (34) 

    1,0,1,0,0,
,
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mn .    (35) 

Proof. Necessity. Let   
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,
, , LIf ca .  In view 

of the semigroup property  
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where   1L . From here follow feasibility 

conditions (33) – (35). Feasibility condition (32) 

follow from Lemma 4.  

This implies the fulfillment of conditions (33) - (35). 

The fulfillment of condition (32) follows from 

Lemma 4. 

Sufficiency. Under condition (32), we can present 

 mnf ,  according to Lemma 3, in the form 
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where     1
,

, Lf mn
mn . Taking into account 

conditions (33) - (35), the last equality is written in 

the form  
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 Using the semigroup property (29), we can write 
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From here    0,
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integral to this equality 
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From here       

 1

,
,

,
,

,
, , LffIf mn

mn
mn

mnca . The 

theorem is proved. 

Note that Theorem 1 is a generalization of Theorem 

2.3 [1, p. 43] in the case of two variables. From it, in 

particular, it follows that the class of functions 

having a summable fractional derivative fca
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the sense of Definition 8 is wider than the class of 
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Changing the order of integration, we get 
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Q.E.D. 

Theorem 3. For any function    1
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equality 

 yxffI caca ,D ,
,

,
, 



 ,       (44) 

and for any function that has a summable derivative 

fca



,
,D  (in the sense of definition 8), the equality 

 
 

 
  

 
 

  





































1

0

1,0
,0

1

1

0

0,1
0,

1
,
,

,
,

,

,,D

m

k

km
m

k

n

i

in
n

i

caca

cxf
k

cy

yaf
i

ax
yxffI

 

   
   

  















1

0

1,1
,

111

0

,
n

i

kmin
mn

kim

k

caf
ki

cyax
,  

 (45) 

where   fIyxf ca

  ,

,, , . 
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From the last equality it follows that 
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from where, redesignating the summation index, we 

get 
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Equality is obtained similarly 
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It is not difficult to see that 
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Taking into account equalities (48), (51) - (53), 

equality (47) is written in the form 
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By grouping the terms, we get 
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In the right-hand side of equality (55), under the 

integral is a summable function. Applying the 

operator 


,
,caI  to both parts of equality (55), we 

obtain 
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Under the integral on the left side of the equality is 

the summable function, and the right side of the 

equality is absolutely continuous. Finding the mixed 

derivative 
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 of both parts of the equality, we 

get 
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The theorem is proved. 
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